
The MusicXML Meeting

M I C H A E L G O O D
V I C E P R E S I D E N T O F R E S E A R C H A N D D E V E L O P M E N T

A P R I L 1 7 , 2 0 1 5

Agenda
•  Introduction to MusicXML

•  MusicXML community progress in the past year

•  MusicXML and the Standard Music Font Layout (SMuFL)
– With Daniel Spreadbury, Steinberg

•  Future directions for MusicXML: content and governance
– With Joe Berkovitz, Noteflight

•  Focused discussion on future directions at the end

•  Reception at 4:00 pm sponsored by Hal Leonard / Noteflight

What is MusicXML?
•  The standard open format for exchanging digital sheet

music between applications

•  Invented by Michael Good at Recordare in 2000

•  Developed collaboratively by a community of
hundreds of musicians and software developers over
the past 15 years

•  Available under an open, royalty-free license that is
friendly for both open-source and proprietary software

•  Supported by almost 200 applications worldwide

MusicXML Is a Notation Format
•  Music is represented using the semantic concepts

behind common Western music notation

•  Includes both how a score looks and how it plays back

•  Includes low-level details of the appearance of a
particular engraving, or the nuances of a particular
performance

– Allows transfer of music between applications with high
visual fidelity

– Also allows the visual details to be ignored when
appropriate

– The best display for paper is often not the best for an
interactive application

MusicXML as an Archival Format
•  MusicXML is an XML format, with all its advantages:

– Files can be opened in any computer text editor
– Fully internationalized via Unicode
– Files are human-readable as well as machine-readable
– Can use all the standard XML tools developed by larger

industries than the music industry

•  Backward compatibility: all valid MusicXML 1.0 files
are also valid MusicXML 3.0 files

•  MusicXML license allows continued development of
the format by anyone, not just MakeMusic

•  Already implemented by nearly 200 programs

Who Uses
MusicXML

Usage map as of
April 2015

Publishing Scores in MusicXML
•  MusicXML is the way that scores get from

composition/publishing applications like Finale and
Sibelius to the new wave of musician applications

•  No DRM controls built-in, though these have been
added in the MusicXML-based Open Score Format

•  For copyrighted music, MusicXML has usually been
a Business-to-Business format, not Business-to-
Consumer

•  Many sites available with public domain MusicXML
scores: see www.musicxml.com/music-in-musicxml

What Is New With MusicXML?
•  New and improved application support

– 25 new applications since last Musikmesse
– 4 more applications out of beta

•  New MusicXML Forum replacing the MusicXML
mailing list

– http://forums.makemusic.com/viewforum.php?f=12
– Atom feed, forum and topic subscriptions in place

•  New possibilities for MusicXML 4.0
– SMuFL
– Evolution for more use cases
– Change of governance

New MusicXML Reader/Writers
– BMML
– NotateMe
– StaffPad
– Mozart (formerly read-only)
– bach (beta)
– Flat (beta)
– Scored (beta)

New MusicXML Writers
– CamraScore
– Cavatina
– HarmonyWiz
– Melomics
– MyScript Music SDK
– Opusmodus
– Score Creator
– SmartScore NoteReader
– Braille Music Compiler (beta)
– Digital Performer 9 (beta)
– MaxScore (beta)

New MusicXML Readers
– Don’s MusicXML Viewer
– Music Prodigy
– PhonicScore
– Practice Player Live Midi
– Purely Musical
– Soundslice
– Antescofo (beta)
– Musicista (beta)

MusicXML Out of Beta
– Denemo
– INScore
– Jellynote
– neoScores

MusicXML and Music Fonts
•  MusicXML provides a standard interchange format

for music notation semantics, layout, and
performance

•  But when translating between MusicXML and a
music notation application, fonts complicate things

•  What code point do I use for a particular MusicXML
element in a particular music notation font?

•  What do MusicXML’s positioning attributes mean
specifically with regards to any particular music font?

•  Enter the Standard Music Font Layout (SMuFL)

Standard Music Font Layout

MusicXML community meeting
19 April 2015

Daniel Spreadbury

What is SMuFL?

•  A standard way of mapping musical symbols to the
Private Use Area of the Basic Multilingual Plane in
Unicode

•  A set of technical guidelines for how music fonts
should be designed and built

•  Simple JSON metadata formats to help
applications use SMuFL fonts easily

•  Released under MIT license, free to use/modify

What’s included

•  2407 glyphs in 108 ranges
•  Includes all 220 glyphs from the Unicode

Musical Symbols range
•  Also includes recommendations for

ligatures, stylistic alternates/sets, etc.
•  Reference fonts for scoring and text-based

application

Bravura

Bravura
•  Reference SMuFL font (OpenType/SVG/WOFF)
•  Includes all SMuFL recommended glyphs, and

hundreds of optional glyphs
•  Released under the SIL Open Font License

–  Free to use, bundle, embed, create derivative
versions, etc.

–  Only licensing restrictions are that the font cannot be
sold on its own; derivative versions cannot use the
same name; and derivative versions must be released
under the same licensing terms

Current status

•  Version 1.12, released January 2015

•  Short backlog of pending suggestions and
issues

•  Considered stable at this time

Implementations

•  Bravura now supported by or shipping with:
– MuseScore 2.0 (open-source scoring software)
–  Logic Pro X 10.1 (Apple’s DAW)
– Soundslice (web-based interactive sheet music)
– Verovio (web-based MEI viewer)
– Groove Freedom (iOS drum tuition app)

•  All above SMuFL-compliant to varying
degrees

Implementations

•  Third-party SMuFL-compliant fonts
include:
– November 2.0 (commercial license)
– Gootville (based on Gonville, MuseScore 2.0)
– Leipzig (Laurent Pugin, ships with Verovio)
– Maestro (MakeMusic Inc., for future Finale)
– Others in development by independent font

developers

Future directions

•  Integrate with MusicXML 4.0

•  Continue advocacy of standard to font
designers and application developers

•  Further development to be guided by
requirements of community, and
Steinberg’s own needs

More information

www.smufl.org

Thank you!

d.spreadbury@steinberg.de

MusicXML 4.0 and SMuFL 1.12
•  SMuFL addresses many standardization issues that have

troubled MusicXML developers for years

•  What could better MusicXML support for SMuFL mean?
– Does MusicXML add support for all of SMuFL’s thousands

of glyphs?
–  If not, what guidelines to determine which ones?
– Could we add escape methods to access SMuFL glyphs by

their canonical name?
– How about standardization on areas such as font

metadata?
– Should MusicXML documentation reference SMuFL

canonical names to clarify the graphical appearance of
different MusicXML elements?

SMuFL Support in MusicXML 3.0
•  A count of “glyphs supported” is tricky because there is

not always a 1-1 mapping between MusicXML concepts
and SMuFL glyphs

•  Glyphs intended for music text font use in particular may
not line up exactly with MusicXML concepts

•  Some SMuFL sets of glyphs make semantic or graphical
distinctions not captured in MusicXML 3.0, though the
common set of base semantics are supported

•  Nevertheless, here are some preliminary counts…

SMuFL Glyphs in MusicXML 3.0
•  MusicXML 3.0 fully supports 839 out of the 2407 glyphs in

SMuFL 1.12, or 35%

•  MusicXML 3.0 partially supports another 254 glyphs, for a
total of 1093 glyphs or 46%

•  Large areas of non-support:
– Extended accidentals: 11 ranges not supported at all,

covering 348 glyphs or 14% of SMuFL
– Pre-CMN notation: 11 ranges not supported at all, covering

217 glyphs or 9% of SMuFL

•  Missing less common symbols in other ranges, or most
symbols in some ranges like multi-segment lines

MusicXML 4.0
•  SMuFL provides one motivation for a major new

MusicXML release

•  What else besides SMuFL support?
– Features and fixes as discussed at last year’s

meetings and on the MusicXML forum
–  Improved online documentation

•  But most interesting is the concept of evolving
MusicXML for better support of more use cases

– Joe Berkovitz will be discussing this in more detail

MusicXML as a Document Format
•  MusicXML has very much focused on a printed musical

score as a reference for its data model

•  Remember the context in 2000: there had been repeated
failure to build a useful music notation interchange format

•  So make it easier to standardize among competing
programs by primarily modeling physical, real-world object

•  Make modeling compatible with leading commercial and
academic applications to ensure ease-of-use for developers

•  MuseData was primary starting point, plus Humdrum

Times Have Changed
•  All but 2 of the major applications related to notation now

support MusicXML

•  Document interchange gets better as software matures and –
even more important – publisher processes change to
emphasize digital-ready scores

•  Starting with the iPad, digital sheet music has gotten much
more popular

•  MusicXML can improve its support for interactive applications
that reflow and go beyond a substitute for paper

•  The need for a better specification has grown with success

Change Can Be Hard
•  MIDI and HTML are two standards whose success led

to limited change and lack of innovation over time

•  Transitions from MIDI 1.0 to HD Protocol and HTML4 to
HTML5 have been difficult

•  MusicXML 3.0 works very well as an exchange and
archival format for common Western music notation,
and we need to keep that compatibility

•  But if MusicXML does not evolve, the odds increase for
fragmentation and losing the interchange that all here
have worked so hard to achieve

MusicXML as an Interactive Platform
•  One great advantage of MusicXML is that it serves as a

model for what one needs to cover in representing
music notation on paper and on screen

•  Can we expand that to being a model for what one
needs to cover to interact with music notation on
screen?

– While maintaining capability with MusicXML 3.0
– And maintaining agreement between different vendors

who implement things in different ways
– The paper score is no longer the external authority

outside of software implementations

Could Change of Governance Help?
•  Standards organization resources could help create a

tighter specification with better validation

•  A standards organization could provide greater stability
than single-company ownership

•  More opportunity for integration with web standards

•  Need a lightweight home that still keeps widespread
participation from individuals and small companies

•  New standards venues might avoid past pitfalls of
standards organization efforts

•  Explored interest at W3C, MMA, and IEC this past year

Staying in Touch
•  MusicXML forum: http://forums.makemusic.com

•  Shows: Musikmesse, NAMM, SF MusicTech

•  Twitter: @MusicXML

•  Facebook: www.facebook.com/MusicXML

•  Email: mgood@makemusic.com

MusicXML: Framing the Future
MusicXML Community Meeting

Musik Messe 2015

Joe Berkovitz (joe@noteflight.com)
President, Noteflight LLC

Co-chair, W3C Web Audio Working Group
W3C Advisory Committee Rep., Hal Leonard Corporation

Who am I?

• I compose and play music

• I build notation software

• My company is owned by a music
publisher

• I work on Web standards

Where can MusicXML  
go from here?

• The Case for Evolution

• How to Evolve?

• Choices in Governance

Facets of Evolution

• History

• Process

• Specification

• Features

• Governance

History

• De facto use cases: exchange and archive

• De facto steering: by notation software vendors

• Non-PDF digital music publishing initially a
sideline, now growing rapidly

• Needed to create conditions for success of a
viable standard

Present-day Publishing with
MusicXML (wishful version)

• Get hold of some MusicXML files from any source

• Feed them into some compatible application

• Everything looks great

• Drink a beer, glass of wine, shot of amaro
(perhaps several) in celebration

Reality Check!

• Get hold of some MusicXML files from any source

• Discover that they use different subsets of MusicXML in different
ways

• Discover that engravers used different features to mean the same
thing, or the same features to mean different things

• Discover that your renderer requires certain features to be present
that are not in your files, or can’t use the features that are there

• Discover that you have no way to specify how your scores should
look in diverse end-user environments (paper, desktop, mobile,
…)

• Drink something stronger (perhaps several) in despair

For Developers, It’s No Easier

• See previous page :-)

Looking Forward

• Many historical goals have been met

• Other goals remain to be clarified, addressed

• Successful digital publishing with MusicXML
is possible, yet challenging

• MusicXML remains the best way forward

• What is the best way to chart and pursue its
future path?

Evolving the Process

• Identify major stakeholder roles

• Form group of active stakeholders

• Develop use case document

• Identify underserved use cases

• Identify key features unlocking these cases

Some Use Cases and Needs

• Notation editor import/export

• Music Publishing

• Reading/performance systems, both desktop & mobile

• Non-editor notation apps (e.g. theory, ear training)

• Scholarly and specialist publications

• In-house publishing

• Libraries and archival services

• Convergence with Web and Epub technologies

Developing a Specification

• MusicXML needs one - XSD distillation is not
equivalent or sufficient

• Large number of optional features creates confusion,
makes results unpredictable

• Spec must identify distinct feature profiles addressing
common use cases.

• Spec must make testable statements about
conformance.

Likely areas for evolution
• Flexible Styling and Layout

• Syntactic validation of semantics

• Metadata vocabularies

• Manipulation, interactivity and selection

• Playback

• Graphics and hypertext inclusion

• Anchors and Pointers

• Annotations

• Accessibility

One likely area:
Cascading Style Sheets (CSS)

• Stylesheets allow definition of “how it looks” to be cleanly
separated from “what it is”.

• Many documents can share the same set of stylesheets.

• To customize the look of a document, change the
stylesheet you are using.

• Style “attributes” can reflect high-level concerns of
engravers (e.g. density or placement conventions) not
low-level details (X/Y positions of many individual
objects)

• Stylesheet queries support responsive design

Cascading Style Sheets (CSS)

print.css: (print-oriented stylesheet)

credit.title { /* manner in which title-type credit should be shown */
 position: absolute:
 top: 120px;
 horizontal-align: center;
}

part { /* inherited attributes applying to all <part> children */
staff-line-spacing: 6px; /* 6 pixels between staff lines */

}
part#P1 { /* override for violin part shown at smaller size */
staff-line-spacing: 4px;

}

measure {
 duration-spacings: 5L 3L 2L 1L 0.7lL; /* standard spacings for durations */
}

direction.tempo { /* How should a tempo direction look? */
 font-weight: bold;
 font-size: 15px;
 default-offset: +2L; /* 2 lines above staff */
}

note.alternateReading { /* special style class for alternate readings */
 note-size: 0.5; /* relative size of note heads */
}

Example: Styling and CSS

Excerpt of score.xml: (note independence from CSS stylesheet)

 . . .
 <credit class=“title">Sinfonia XLVII</credit>
 . . .
 <part id=“P1”>
 <measure number="1">
 <direction class="tempo">Grandly</direction>
 <note>

. . .
 </note>
 <note class=“alternateReading”>

. . .
 </note>
 . . .
 </part>
 . . .

Example: Styling and CSS

mobile.css:

credit.title {
 display: none; /* in mobile app, title is not part of score rendering */
}

part { /* inherited attributes applying to all <part> children */
staff-line-spacing: 8px;

}

note.alternateReading { /* special style class for alternate readings */
 color: rgb(127,127,127); /* on mobile, gray out rather than make smaller */
}

Interactivity plus styling with
CSS, DOM, jQuery

// Highlight the most recently clicked note as green and play it

var highlightedNote = null; // track last-clicked note

// Highlight a given note
function highlightNote(note) {
 if (highlightedNote) {
 highlightedNote.css("color", “"); // remove previous highlight
 }

 highlightedNote = note;
 highlightedNote.css("color", “rgb(0,255,0)"); // apply new highlight
}

// Process click events dispatched from note elements in MusicXML DOM
document.addEventListener("click", function(event) {
 var target = $(event.target);
 if (target.is("note")) {
 highlightNote(target);
 }
}

The Best Way to Evolve

• Consortium-based governance is the best way forward

• Standards-track process will force clear specification

• Consortium ownership assures openness and fairness

• Membership supplies diverse, fresh viewpoints

• Leadership supplies continuity, domain expertise

• Consortium supplies adjacent expertise, technical/
legal/process support

Compatibility

• Goal: preserve as much as possible

• Easier to migrate MusicXML than begin over again

• Always have a well-defined mapping in both directions
across any syntactic change

• Public domain tools for transforming old <-> new

Some Adjacent Standards

• CSS

• SVG

• SMuFL (should ideally be open, too!)

• HTML

• MIDI

• EPUB

• others?

Consortium Choices

• W3C owns many adjacent specifications and
provides access to their experts

• W3C has excellent technical support for
developing specs and seeing them through

• W3C has proven its ability to adapt

• MMA is custodian of an important but singular
and domain-specific spec

• EPUB still primarily targets text-oriented
publications, moving towards Web, Arts, STM

Proposal

• Form W3C Community Group (CG) with Michael Good in a
leadership role. CGs are the initial step on a track to W3C
standard. No membership fees are required.

• CG immediately publishes current rev. of MusicXML

• Begin to identify use cases, needs, features

• Begin to codify complete, verifiable specification.

• Recruit best musical experts and experts in adjacent
technologies (e.g. CSS, EPUB, MIDI)

• Eventual W3C Working Group and Recommendation

Questions for Attendees

• Do you feel this proposal is worth further consideration?

• Are there ways you would like to see MusicXML evolve?

• Would you like to be a stakeholder directly involved in this evolution?

• Or… do you want to be represented by a stakeholder whose
interests align with yours?

• Do you feel consortium ownership would bring benefits for
MusicXML?

• Do you feel that W3C could deliver these benefits? Would another
consortium be better?

